Pages

PET Scans



Positron emission tomography (PET) scanning is a specialized imaging technique that uses short-lived radioactive drugs to produce three-dimensional colored images of those substances in the tissues within the body. While CT scans and MRI scans look at anatomical structures, PET scans measure metabolic activity and the function of tissues. PET scans can determine whether a tumour tissue is actively growing and can aid in determining the type of cells within a particular tumor. 

In PET scanning, the patient receives a short half-lived radioactive drug, receiving approximately the amount of radiation exposure as two chest X-rays. The drug accumulates in certain tissues more than others, depending on the drug that is injected. The drug discharges particles known as positrons from whatever tissues take them up. As the positrons encounter electrons within the body, a reaction producing gamma rays occurs. A scanner records these gamma rays and maps the area where the radioactive drug has accumulated. For example, combining glucose (a common energy source in the body) with a radioactive substance will show where glucose is rapidly being used, for example, in a growing tumor. 

PET scanning may also be integrated with CT scanning in a technique known as PET-CT scanning. Integrated PET-CT has been shown to improve the accuracy of staging (see below) over PET scanning alone.



No comments:

Post a Comment